
ISSN (Online) : 2278-1021
ISSN (Print) : 2319-5940

 International Journal of Advanced Research in Computer and Communication Engineering
 Vol. 3, Issue 4, April 2014

Copyright to IJARCCE www.ijarcce.com 6299

TECHNOLOGY IMPLEMENTATION OF

COMPUTER HARDWARE IN THE

VIRTUAL MACHINES

Dr. Osama Ahmad Salim Safarini

Computer Engineering Department, University of Tabuk, Tabuk, KSA

Abstract: This article deals with designing methods and interfaces for virtual devices and implementing these devices in

the virtual machine (computer). The analysis of the functions performed by the virtual device, and on the basis of that

analysis is generated a list of operations of virtual device interface. The purpose of this article is identification of the main

features of the implementation and operation of computer hardware in the virtual machine.

Keywords- virtual machine (VM); operating system (OS); virtual machine monitor (VMM); virtual device (VD)

I. INTRODUCTION

 At the present time structure of the virtual machine (VM)

includes a main computer called the host, operating system

(OS) of the host, virtual machine monitor (VMM), which

consists generally of several components, and the VM itself,

containing all the necessary devices of the modern computer.

The design of VM includes in addition to developing the

processor and memory virtual machines, and even the
creation of virtual devices (VD) in the computer. The

purpose of this article is identification of the main features

of the implementation and operation of computer hardware

in the virtual machine.

 For X86-based minimum set of devices needed for the

computer, entered in the microchips motherboard

Northbridge and Southbridge [1, 2]. First of all it is

necessary for computer the emulation of PCI bus. PCI Bus

provides the functionality of the plug-and-play [3], which

can further take advantage of virtual machine operating

system. All other computer peripherals currently represent
nodes on the PCI bus. First turn to such nodes is the south

bridge chip. It contains the necessary devices such as

interrupt controller, controllers: serial and parallel input-

output ports, the controller PS / 2 connector for keyboard

and mouse, controller ATA / ATAPI for connection the

accumulators, and other controllers. We should also mention

the video controller, which may be represented as a separate

device on the PCI bus.

 Most computer devices located on the PCI bus. To the

PCI bus may be connected other buses for interaction with

devices that support the standard plug-and-play. At present,
more and more important becomes USB Bus [4].

II. DESIGNING METHODS FOR VIRTUAL DEVICES

 All peripheral devices of the computer must be contained

within the virtual machine. Design of devices can be based

on one of the methods listed below:

1) As virtual devices in the virtual machine a device

can be used from the host equipment. The device is

connected directly to the input-output ports of VM;

2) as virtual devices in the virtual machine is used as a

hardware device from the host equipment, but the virtual

machine monitor controls information transmitted and if

necessary makes adjustments;

3) part of the devices responsible for communicating

with the VM can be implemented in software, while the

basic functionality of virtual device may be provided with

driver by the host operating system;

4) Virtual devices can be built entirely on a program

basis

In fact, these methods are fully gradation of hardware to a

fully software principle of building a virtual device. We are

to consider the advantages and disadvantages of these

methods.

The first method is presented in Fig.1.

Fig.1 Connect the device directly to the VM

It suggests that a hardware device from the host equipment
is taken out of the scope of the host operating system and

connected to the memory address space and the I/O VM.

This action is required to be performed by VMM. The

control of the device is fully passed on to the OS VM. Host

in the future cannot control the status of the device and the

transmitted information on it.

Real

Device VM

ISSN (Online) : 2278-1021
ISSN (Print) : 2319-5940

 International Journal of Advanced Research in Computer and Communication Engineering
 Vol. 3, Issue 4, April 2014

Copyright to IJARCCE www.ijarcce.com 6300

The advantages of the method include no reduction device

performance as in this case there are no software

components.

The method has the following disadvantages:

First, when the need to create multiple VMs, one and the

same device cannot be connected simultaneously to more
than one VM. If we are talking about a device such as a

floppy disk drive, then such a device is almost always

present in the system in no more than one instance.

Second, as already mentioned, when using such a method

the host does not control the device and if necessary,

cannot change the state of the device, for example, to limit

power consumption.
The second method is a modification of the first (Fig.2).

Fig.2 VMM control over plugged device

Although the device as in the first method is directly

connected to the address space VM, VMM retains control of
information and traffic of the hardware device.

At the side of the VMM, method requires some software

processing information associated with the device. Such

processing can be done using simple deterministic

automaton.

The advantages to be added of the method is the ability to

control the device from the VMM, however, as before, the

disadvantages remains inability of separation the device

between two or more virtual machines.
The third method involves maintaining functional device

using the device driver OS host. VM communicates with the

device not directly, but through the VMM.

VMM contains the emulator interface interaction of the
device and programs by VD. VD, emulated by VMM will

contain a complete set of device control registers. The

operating system of VM can through these registers control

the operation of VD. However, the actual work on the

transmission of information using this method performs the

real device under control of the driver OS host.

This method has several significant advantages.

First since the VMM emulates the interface device, then in

the structure of VM, we can integrate as many VDs as

necessary.

Second, it becomes possible for switching VD to real device

only when the need arises.

Third, the VMM is able to manage power consumption of

real devices.

Illustration of the method is shown in Fig. 3.

Fig.3. Connecting the virtual device by the operating system of the host

Disadvantages of the method should include a rather

complex structure of the Device Emulator VMM. VMM

must contain a full automate, repeating reaction of the

present device. Another drawback of the method is the need

for driver emulated device comprising the OS host and the

hardware device itself.

Unified access interface from the side of OS host allows

VMM to implement only one device of the total class

devices. Thus, for video VMM it is enough to realize in VM

comprising adapter VGA, during the work of VM is made
reference to the same graphic card that is available on the

host.

Finally, the fourth method of constructing VD is full

emulation of the device by VMM software fig. 4.

VMM

 Fig.4. device emulation

Since all of the functionality of VD is emulated by CPU, the

complexity of programs used for emulation grows and there

are delays in the operation of the VM. These circumstances

impose restrictions on the use of the method in conjunction

with other methods which use real hardware devices. The

delays imposed by the emulation can cause a

 VD
Real

Device
VM

VMM

VM

VM

VD

VM

VM

VMM OS of the

Host

Real

Device

ISSN (Online) : 2278-1021
ISSN (Print) : 2319-5940

 International Journal of Advanced Research in Computer and Communication Engineering
 Vol. 3, Issue 4, April 2014

Copyright to IJARCCE www.ijarcce.com 6301

dissynchronization with the hardware devices used in the

composition of the VM. Therefore, the method can be

applied either for emulation of devices with a fairly simple

operation algorithm, or by emulation of the entire complete

VMs when delays in the VM no longer play a decisive role.

When developing VM, the decision of the choice of a
particular method for Programming devices shall be taken

for each specific device separately, depending on the

structure and the work algorithm of the device, its speed, and

on the basis of existing safety policy system in general.

Device that makes high demands on system performance,

functioning on the basis of a complex work algorithm, must

be programmed using the available computer hardware.

When programming simpler and slower VDs, we can use full

emulation. The application of methods of direct hardware

control of the device by the VM is undesirable in terms of

safety.

III. DESIGNING INTERFACES VIRTUAL DEVICES

 Any peripheral device can interact with the computer

program, executed BY processor via device interfaces. There

are the following basic interaction interfaces:

1. display the device in the physical memory address

space of the processor;

2. display the device in the address space of ports I/O;

3. gaining device access to the memory of the

computer;

4. Setting device interrupt signal in interrupt

controller and interaction through one of the buses of the

computer.

This list of devices interaction interfaces is very important

because it determines the construction principles of software
interface VD. For VD as part of the VM, the list of base

interfaces of interaction does not change. Within these

interfaces, it is possible the following operations on the

interaction of the VD with the processor of VM and between

themselves:

1. reading from the memory of VD is mapped in the

address space of physical memory;

2. writing to memory of VD is mapped into the

address space of physical memory;

3. reading from the memory of VD is mapped into the

address space of input-output processor;

4. writing to memory of VD is mapped into the

address space of input-output processor;

5. reading of VD data from the memory of VM;

6. writing of VD data to the memory of VM;

7. the device exhibiting an interrupt signal on the

peripheral bus, or an interrupt controller, or directly to the

processor [5];

8. reading from the memory of VD is mapped into the

address space of a peripheral bus;

9. writing to memory of VD is mapped into the

address space of a peripheral bus;

Steps 5 and 6 are performed in a real computer by a device

that is able to operate in the Bus Master mode, directly

accessing the computer's RAM. In this mode typically

operate storage media. Step 1 - 4, 8, 9 are initiated by a

CPU. Step 5-7 initiated by the device itself. A device located
in bus PCI, exposes interrupt signal to bus controller, bus

controller exposes interrupt signal to interrupt controller, and

interrupt controller sends the interrupt bus message [6] that

an interrupt occurs to the processor.

Each of these operations should be implemented appropriate

method VD interface. Particularly difficult in
implementation are operation 5-7, that are initiated by the

VD itself. For VD to perform one of these operations, it

should be able to get control. If VD is implemented either by

the host operating system, or by emulation method, is

necessary to provide a mechanism under which VD could

gain control. As one embodiment of such a mechanism can

be proposed periodic timer, by which VD could gain control.

In this approach, long intervals of standby VD must be

programmed independently as the sum of the intervals

periodic timer. Based on the foregoing, to the existing list of

operations of VD is necessary to add the operation of
connection to a periodic timer.

Connecting hardware devices of the VM passes the same

steps as in the real computer system. Device comprising VM

must first be "installed" in a VM, and then "Included" in the

power supply emulation to the VM. Later the device passes

configuration stage through the BIOS and OS of VM and
only then starts to operate in the normal mode.

Shutting down VM goes through the stages that are reverse

steps of starting the VM. First the driver comprising OS

VM exits the device and resets its internal buffers. Then OS

VM through ACPI BIOS turns «off» the device [7]. At the

last stage, there is a "check-out" of VD from VM. This step

is necessary for deinitialization VD (cleaning

lists, freeing memory, etc.). It should be noted that during

operation of the device comprising a real computer, and the

VD comprising a VM could be several times turned "on" and

"Off". These operations are performed at the request of the
OS, the computer power manager.

Thus, to the above mentioned list of operations with VD, are

added the following operations:

1. installation of VD in the VM;

2. Turning on VD;

3. Turning off VD;

4. Removing VD from the VM.

These operations must also be implemented as a VD

interface methods.

ISSN (Online) : 2278-1021
ISSN (Print) : 2319-5940

 International Journal of Advanced Research in Computer and Communication Engineering
 Vol. 3, Issue 4, April 2014

Copyright to IJARCCE www.ijarcce.com 6302

Further expansion of the VD interface associated with the

alignment of devices in the VM in ordered lists. Thus, PCI

device must be contained in a set of other devices with the

same interface. Furthermore, if the VM does not contain the

PCI bus, all devices on a given bus does not have to go

through the initialization, i.e. during "installation" the VD in
the VM it should be able to receive information about VM

configuration, enquiring about this VMM. To the list of VD

operations, we should add the following operation: Request

VMM about VM configuration.
Finally, every VD in the composition of the VM in the

process of functioning performs actions that require

memory. Requests for allocation and deallocation of

memory can be realized only by the VMM. These requests

constitute two more methods VD interface.

If the software part of VD designed with simultaneous

operation of multiple instances of VD in parallel VM, there

is a need for the organization of critical resources composed
in VD. Such resources and access to them can be organized

on the basis of critical sections. Methods for creating, access

and remove critical sections are also included in VD

interface.

IV. CONCLUSION

Methods of designing VD as part of the VM vary depending
on the degree of utilization of the real computer hardware in

the moment of creation of VD. Whichever method is

selected for development VD from the four possible

methods, the interface of VD must be uniquely organized. It

should contain a set of operations implemented as interface

methods providing operability of VD comprising VM. We

List once again full comprehensive list of operations:

1. reading from the memory of VD is mapped into the

address space of physical memory;

2. writing to memory of VD is mapped into the

address space of physical memory;

3. reading from the memory of VD is mapped into the

address space of input-output processor;

4. writing to memory of VD is mapped into the

address space of input-output processor;

5. reading data of VD from the memory of VM;

6. writing of VD data to the memory of VM;

7. the device exhibiting an interrupt signal on the

peripheral bus, or an interrupt controller, or directly to the

processor [5];

8. reading from the memory of VD is mapped into the

address space of a peripheral bus;

9. writing to memory of VD is mapped into the

address space of a peripheral bus;

10. connection to a periodic timer;

11. installation of VD in the VM;

12. Turning on VD

13. Turning off VD

14. Removing VD from the VM;

15. Request VM configuration;

16. memory allocation;

17. freeing memory;

18. creating a critical section;

19. entrance to the critical section;

20. Exit from a critical section;

21. Remove critical section.

Combining these operations into a single set allows you to

create a VD with unified interface. Currently VM

manufacturers do not provide interface to VD in the

composition of the VM. Creating a unified interface VD

enables the design of a large list of different VD,

corresponding to their real analogs. Currently author's group

is developing prototype software controlling the operation of

the VM, which allows showing all merits of the proposed

methods.

REFERENCES

[1]. Intel R _ 945G/945GZ/945GC/ 945P/945PL Express Chipset Family.
Datasheet. — November, 2007. Intel Corporation (www.intel.com).

[2]. Intel R _ I/O Controller Hub 7 (ICH7) Family. Datasheet. — April,

2007.Intel Corporation (www.intel.com).

[3]. Anderson D., Shanley T., PCI system architecture. — 4th ed. — N.Y.:

MindShare Inc. Addison-Wesley, 1999. — 788 p.

[4]. Enhanced Host Controller Interface Specification for Universal Serial

Bus. Revision 1.0. — March 12, 2002. Intel Corporation

(www.intel.com).

[5]. Intel R _ 64 and IA-32 Architectures Software Developer’s Manual.

Vol. 3A: System Programming Guide. Pt. 1. — September, 2008. Intel

Corporation (www.intel.com).

[6]. 82093AA I/O Advanced Programmable Interrupt Controller

(IOAPIC). — May, 1996. Intel Corporation (www.intel.com).

[7]. Advanced Configuration and Power Interface Specification. Revision

3.0b. — October 10, 2006 (www.acpi.info).

BIOGRAPHY

Dr. Osama Ahmad Salim Safarini

had finished his PhD. from The

Russian State University of Oil and
Gas Named after J. M. Gubkin,

Moscow, 2000, at a Computerized-

Control systems Department. He

obtained his BSC and MSC in

Engineering and Computing Science

from Odessa Polytechnic National

State University in Ukraine 1996.

He worked in different universities

and countries.

	Introduction
	Designing Methods for virtual devices
	Designing interfaces virtual devices
	Methods of designing VD as part of the VM vary depending on the degree of utilization of the real computer hardware in the moment of creation of VD. Whichever method is selected for development VD from the four possible methods, the interface of VD mu...
	References

	Intel R _ 945G/945GZ/945GC/ 945P/945PL Express Chipset Family. Datasheet. — November, 2007. Intel Corporation (www.intel.com).

